Section 3.2: Domain and Range of graphs of functions

Determine if a graph represents y as a function of x .

We learned how to determine if a relation represents y as a function of x in the previous section.

1) y is a NOT a function of x if there are two or more points with the same x-value, but different y - values.
2) y is a function of x if each x has a different y.

To determine if a graph represents y as a function of x can be difficult using what we know so far. This is because points on a graph are not always marked. This can make it hard to find points that have the same x-values with different y-values .

There is technique called the vertical line test that is often used to determine if a graph represents y as a function of x.

The vertical line test is a quick way to determine if a graph represents y as a function of x without the need of listing different points with the same $x-$ values but different y-values.

Vertical line test:

- If a vertical line can be drawn to touch the graph of a function in more than one place, then y is NOT a function of x.
- If it is not possible to draw a vertical line to touch the graph of a function in more than one place, then y is a function of x .

For Example: Use the vertical line test to determine if the graph depicts y is a function of x.	Solution: \boldsymbol{y} is NOT a function of \boldsymbol{x} (as it is possible to draw a vertical line to touch the graph in more than one place.)

Find the Domain and Range from the graph of a continuous function using INTERVAL NOTATION

Interval notation has two types of symbols:

1) Parenthesis ()

Use round parenthesis when:
a) point is marked with an open circle o
b) value is infinity ∞

2) Bracket []

Use bracket when:
a) point is marked with a closed circle
b) point is an unmarked point on a graph

Writing the domain and or range may require a bracket on one side of the interval and a parenthesis on the other.

- How to find domain from a graph of a continuous function and write answer in interval notation.

Step 1) Identify the x-coordinate of left-most the point on the graph. Place it after the appropriate symbol (or [.

Step 2) Identify the x-coordinate of the right-most point on the graph. Place it before the appropriate symbol) or].

- How to find range from a graph of a continuous function and write answer in interval notation.

Step 1) Identify the y-coordinate of lowest point on the graph. Place it after the appropriate symbol (or [.

Step 2) Identify the y-coordinate of the highest point on the graph. Place it before the appropriate symbol) or].

It is common for a to graph continue beyond the portion of the graph we can see; the domain and range may be greater than the visible portion of the graph.

We generally need \propto for one or both sides of the interval of the domain and or range when a graph extends beyond what we can see.

Find the domain and range of the graph below, write answer in interval notation.

Domain:
First: Find the x-coordinate of the point that is furthest left and decide whether to put a (or [before the number.

The point that is furthest left is $(-3,-5)$. The $x-$ coordinate of the point is $x=-3$.
"[" is needed as the point is marked with a closed circle.

The domain will start with [-3,

Second: Find the x-coordinate of the point that is furthest right and decide whether to put a) or] after it.

The point that is furthest right is $(2,0)$. The $x-$ coordinate is $\mathrm{x}=2$.
")" is needed as the point is marked with an open circle.

The domain will end with ,2)

Range:

First: Find the y-coordinate of the bottom point and decide whether to put a (or [before the number.

The bottom point is $(-3,-5)$. The $y-$ coordinate of the top point is $y=-5$
"[" is needed as the point is marked with a closed circle.

The range will start with [-5

Second: Find the y-coordinate of the top point and decide whether to put a) or] after it.

The top point is $(0,4)$. The y-coordinate of the top point is $\mathrm{y}=4$.
"]" will be needed to end the range as the point $(0,4)$ is an unmarked point on the graph.
y to end the range: ,4]

Answer: Range [-5, 4]

Answer: Domain $[-3,2)$

For Example: Find the domain and range of the graph below, write answer in interval notation.

Domain:
First: Find the x-coordinate of the point that is furthest left and decide whether to put a (or [before the number.

The point that is furthest left is $(2,-1)$. The $x-$ coordinate of the point is $x=2$.
" [" is needed as the point is marked with a closed circle.

The domain will start with [2,

Second: Find the x-coordinate of the point that is furthest right and decide whether to put a) or] after it.

This is a situation where the graph continues beyond what can be seen.

The graph extends to the far-right edge of the x axis. When a graph extends to the far-right edge of the x-axis, ∞ will be needed to end the domain.
")" is needed: round parenthesis are always used for ∞.

The domain will end with,∞)

Answer: Domain $[-1, \infty)$

Range:

First: Find the y-coordinate of the bottom point and decide whether to put a (or [before the number.

This is a situation where the graph continues beyond what can be seen.

The graph extends to the bottom of the y-axis. When a graph extends to the bottom of the y axis, $-\infty$ will be needed to start the range.
"("is needed: round parenthesis are always used for ∞ and $-\infty$.

The range will star with ($-\infty$,

Second: Find the y-coordinate of the top point and decide whether to put a) or] after it.

The top point is $(2,-1)$. The y-coordinate of the top point is $\mathrm{y}=-1$.
"]" will be needed to end the range as the point $(2,-1)$ is marked with a closed circle.
y to end the range: ,-1]

Answer: Range ($-\infty,-1$]

Find the domain and range of the graph below, write answer in interval notation.

Domain:
First: Find the x-coordinate of the point that is furthest left and decide whether to put a) or] after it.

This is a situation where the graph continues beyond what can be seen.

The graph extends to the far-left edge of the x-axis. When a graph extends to the far-leftt edge of the x axis, $-\infty$ will be needed to start the domain.
" (" is needed: round parenthesis are always used for ∞.

The domain will start with $(-\infty$
Second: Find the x-coordinate of the point that is furthest right and decide whether to put a) or] after it.

This is a situation where the graph continues beyond what can be seen.

The graph extends to the far-right edge of the x-axis. When a graph extends to the far-right edge of the x axis, ∞ will be needed to end the domain.
")" is needed: round parenthesis are always used for ∞.

The domain will end with,∞)

Answer: Domain $(-\infty, \infty)$

Range:
First: Find the y-coordinate of the bottom point and decide whether to put a (or [before the number.

This is a situation where the graph continues beyond what can be seen.

The graph extends to the bottom edge of the y-axis on both sides of the graph. When a graph extends to the bottom of the y-axis, $-\infty$ will be needed to start the range.
"("is needed: round parenthesis are always used for ∞ and $-\infty$.

The range will start with ($-\infty$,

Second: Find the y-coordinate of the top point and decide whether to put a) or] after it.

The top point is $(0,2)$. The $y-$ coordinate of the top point is $y=2$.
"]" will be needed to end the range as the point $(0,2)$ is unmarked.
y to end the range: , 2]

Answer: Range ($-\infty$, 2]

Find the domain and range of the graph below, write answer in interval notation.

Domain:
First: Find the x-coordinate of the point that is furthest left and decide whether to put a (or [before the number.

The point that is furthest left is $(-3,4)$. The x coordinate of the point is $x=-3$.
"(" is needed as the point is marked with an open circle.

The domain will start with (-3 ,

Second: Find the x - coordinate of the point that is furthest right and decide whether to put a) or] after it.

The point that is furthest right is $(3,-2)$. The x - coordinate is $x=3$

The domain will end with ,3)
")" is needed as the point is marked with an open circle.

Answer: Domain $(-3,3)$

Range:

First: Find the y - coordinate of the bottom point and decide whether to put a (or [before the number.

The bottom point is $(3,-2)$. The $y-$ coordinate of the bottom point is $y=-2$
"(" is needed as the point is marked with an open circle.

The range will start with (-2

Second: Find the y - coordinate of the top point and decide whether to put a) or] after it.

The top point is $(-3,4)$. The $y-$ coordinate of the top point is $y=4$.
")" will be needed to end the range as the point $(0,4)$ is marked with an open circle.
y to end the range: , 4)

Answer: Range ($-2,4$)

Find the domain and range of the graph below, write answer in interval notation.

Domain:
First: Find the x-coordinate of the point that is furthest left and decide whether to put a) or] after it.

This is a situation where the graph continues beyond what can be seen.

The graph extends to the far-left edge of the x-axis. When a graph extends to the far-left edge of the xaxis, $-\infty$ will be needed to start the domain.
" (" is needed: round parenthesis are always used for ∞.

The domain will start with ($-\infty$
Second: Find the x-coordinate of the point that is furthest right and decide whether to put a) or] after it.

This is a situation where the graph continues beyond what can be seen.

The graph extends to the far-right edge of the x-axis. When a graph extends to the far-right edge of the x axis, ∞ will be needed to end the domain.
")" is needed: round parenthesis are always used for ∞.
The domain will end with,∞)

Answer: Domain $(-\infty, \infty)$

Range:
First: Find the y-coordinate of the bottom point and decide whether to put a (or [before the number.

This is a situation where the graph continues beyond what can be seen.

The graph extends to the bottom edge of the y-axis on both sides of the graph. When a graph extends to the bottom of the y-axis, $-\infty$ will be needed to start the range.
"("is needed: round parenthesis are always used for ∞ and $-\infty$.

The range will start with ($-\infty$,

Second: Find the y-coordinate of the top point and decide whether to put a (or [before the number.

This is a situation where the graph continues beyond what can be seen.

The graph extends to the top edge of the y axis on both sides of the graph. When a graph extends to the bottom of the y-axis, ∞ will be needed to end the range.
"("is needed: round parenthesis are always used for ∞ and $-\infty$.

The range will end with , ∞)

Answer: Range $(-\infty, \infty)$

Section 3.2: Domain and Range of graphs of functions
\#1-10: Use the vertical line test to determine if the graph represents y as a function of x .

6)

\#1-10 Continued: Use the vertical line test to determine if the graph represents y as a function of x.

\#11 - 2: Determine whether the equation defines y as a function of x. Hint, solve the equation for y and sketch a graph using your calculator, then apply the vertical line test.
11) $y=x^{2}$
12) $y=x^{2}+4$
13) $y=\sqrt{x+2}$
14) $y=\sqrt{x-2}$
15) $y^{2}+x^{2}=9$
16) $(x-2)^{2}+y^{2}=16$
17) $x=y^{2}$
18) $x+2=y^{2}$
\#19-38: Find the domain and range of function. Write your answer in interval notation.

22)

28)

36)

\#39-53 Use algebra to find the domain of each function. Write your answer in interval notation.
39) $f(x)=\sqrt{x-2}$
40) $f(x)=\sqrt{x-3}$
41) $g(x)=\sqrt{3 x+12}$
42) $g(x)=\sqrt{2 x+10}$
43) $f(x)=\frac{x+2}{x-3}$
44) $f(x)=\frac{x-6}{x-7}$
45) $f(x)=\frac{2}{x^{2}+6 x-7}$
46) $g(x)=\frac{5}{x^{2}-5 x+6}$
47) $f(x)=3 x+6$
48) $g(x)=2 x-10$
49) $f(x)=x^{2}+4$
50) $g(x)=x^{2}+5$
51) $h(x)=x^{2}+6 x-7$
52) $f(x)=x^{2}+2 x-15$

